Ngóora (jëmm)

Jóge Wikipedia.
Dem : Joowiin, Seet

Ci jëmm, ngóora gi mooy limu kàttan gi genn noste di jox geneen ci jenn jamono. Kon ngóora daf lay delloo ci kàttan gi nekk ci biir genn noste gi, dila xamal liggéey bi mu man def ci jenn jamono. Liggéey bi man naa gaaw te woyof, diis te yeex, walla boole ñaar yépp, gaaw te diis, boobaa dina laaj kàttan gu jéggi dayoo.


Natt ngóora gi[Soppi]

Segam ngóora gi mooy liggéey ci jamono, lu liggéey bi di gën a diis jamono ji mu koy di gën a néew ngóora gi di gën a bari.

P=\lim_{\Delta t\to 0}\frac{\Delta L}{\Delta t}=\frac{\operatorname dL}{\operatorname dt}
1\ \mathrm{Watt} = \frac {1\ \mathrm{J}}{1\ \mathrm{s}}
  • W: Watt bennaanu nattu ngóora gi
  • J: Joule di bennaanu nattu liggéey bi
  • S: Saa di bennaanu nattu jamono ji.

Nattiinu ngóora gi mi ngi aju ci xeetu noste gees am.

Su nekkee kàttanu doolerandu lanu am, noo ngi koy nattek ab baril ci diggante doole jees ci def ak xéel yi noste gi di demee:

P = \mathbf F\cdot\mathbf v

Su fekke kàttanu mbëj lanu am, noo ngi koy nattek ab baril ci diggante dend beek dawaanu mbëj bi:

P = \mathbf V\cdot\mathbf I

Sunu xamee àtte bi yor ngóora gi, anam gi muy soppeekoo ci jamono P(t) (t:jamono) ak diir bi muy amee, Kàttan gees weccee gépp ci doxug noste gi manees na koo natt:

\Delta E = \int_{t_0}^{t_1}P\operatorname dt