Xiirtalu

Jóge Wikipedia.
Dem : Joowiin, Seet

Xiirtalu ag feeñte la gees di gis ci ag ndombo gu mbëj. su dawaan biy jàll ci ndombo gi di soppeeku, sunu sukkandikoo ci àtte Lorentz, dafay sabab jenn doole ju mbëjdoxalukaay juy bañ coppiteeg dawaan bi. Su ndëgërlu gi doonee liy bañ walug dawaan bi, xiirtalu gi mooy li bañ ag coppiteem ci jamono. Gii xeetu feeñte ci dawaan bu safaanu rekk lañu koy amee. Walug bijjaakon gees di am ci juddug ab toolu bijjaakon ci biir ndombo gi mooy tax nu man a xayma dayoo bu xiirtalu gi.

Tekkeem[Soppi]

Su ab dawaanu mbëj i di jàll ci ab wommatukaay xiirtalu gi mooy juddal ab toolu bijjaakon ci li ko wër. Su nekkee dawaan buy soppeeku ci jamono walug bijjaakon bi \Phi dafay soppeeku ci jamono moom itam, coppite googu mooy sabab jenn doole ju mbëjdoxalukaay juy bañ coppiteg wal gi.

Segam xiirtalu gi mooy liy bañ coppiteeg dawaan bi te ci dawaan bu safaanu li ñu bëgg mooy dawaan bi di man a soppi dayoom ak ci benn baraay bi, kon xamees na ne man naa nekk gànlankoor ba tax keman wara tuuti. Xiirtalu gi L walug toolu bijjaakon beek dawaanu mbëj bi ñoo nu koy jox.

L= \frac{\Phi}{i}

Bennaanu nattam lañuy wax henry: 1 Henry = 1 Weber /1 Ampere (1 H = 1 WB/1 A).

Ci ag xiirtalukaay gu 1 henry su coppiteeg dawaan bi nekkee 1 Ampere ci saa dafay jur jenn doole ju mbëjdoxalukaay ju 1 volt.

Donte tekkeem gii mooy bi gën a siiw doonul bi gën a yomba natt ndax fii xiirtalu gi dafa aju ci wal gi \Phi muy genn kemu jëmm gees manuta natt. Ba tax ñu xalaat neneen nees ko manee ame ak ndimbalu àtteb Lorentz.

e(t) = -\frac{\mathrm d\Phi(t)}{\mathrm dt}

Maanaam :

e(t)= - L{di(t)\over dt}\,

nga xam ne :

  • L mooy xiirtalu ndombo gi
  • {di\over dt}\, mooy coppiteeg dawaan biy jàll ndombo gi ci jenn jamono,
  • Su dawaan bi dul soppiku, di/dt dafay doon tus bay tax doole ju mbëjdoxalukaay ji di doon it tus.
  • Màndarga bi (-) dafay wone ni dooley mbëjdoxalukaay ji di dekkarlook coppiteeg dawaan bi.

Xiirtalante[Soppi]

Su benn dawaan bi i di aw ci genn ndombo gu mbëj te di jur ab toolu bijjaakon buy àgg ci geneen ndombo gu nekk ci wetam, daf fay jur jenn doole ju mbëjdoxalukaay moom it juraat beneen toolu bijjaakon buy dellu ci ndombo gu njëkk ga daldi fay jur, moom waat, jeneen dooley mbëjdoxalukaay ak beneen toolu bijjaakon.

Su fekkee genn ndombo rekk la dawaan bi koy jàll mooy jur toolu bijjaakon biy jur dooley mbëjdoxalukaay ji.

Su fekkee nak ñaari ndombo lañu toolu bijjaakon bi kenn kiy jur, du yam ci moom rekk, mooy dem ci geneen ndombo gi jur fa dooley mbëjdoxalukaay jiy bañ coppiteeg dawaan bi koy jàll.

M_{1/2} = \frac{\Phi_2}{i_1} \,
  • M1/2 di xiirtalante gi ci ñaari nbombo yi.

Xiirtalante gi dafay aju ci diggante bi nekk ci ñaari ndombo yi, fu ñu feetante, seen melokaan ak limu lëmës yi.

Ngóora ci saa-su-nekk[Soppi]

Manees naa rënk ngóora ci biiram, bokkul ak ndëgërlu gi nga xam ne kàttanu mbëj gi nga koy jox daf koy yàq, soppi ko tàngoor, xiirtalu gi moom daf koy denc benn diir bi delloo ko ndombo gi, ba tax manees na natt ngóora gi ci:

P = u \cdot i = L  \frac{di}{dt} \cdot i\,

sunu ko laalaatee:

 \frac{d(i^2)}{dt}  =i \cdot \frac{d(i)}{dt} + \frac{d(i)}{dt}\cdot i = 2 \frac{d(i)}{dt}\cdot i  \,

nu am gii digaale:

P = \frac{1}{2} \cdot  L  \frac{d(i^2)}{dt} \,

kàttan gees di am ci diirub ñaari jamono j1 ak j2 mat:

W = \frac{1}{2} \cdot  L  (i^2_{j2}-i^2_{j1}) \,

Li ciy tukkee di ni yombul a soppi ci lu gaaw dawaan biy daw cib taxañ te dafay yées lu xiirtalu gi di yokku.